The Dual Integral Equation Method in Hydromechanical Systems
نویسنده
چکیده
Some hydromechanical systems are investigated by applying the dual integral equation method. In developing this method we suggest from elementary appropriate solutions of Laplace’s equation, in the domain under consideration, the introduction of a potential function which provides useful combinations in cylindrical and spherical coordinates systems. Since the mixed boundary conditions and the form of the potential function are quite general, we obtain integral equations with mth-order Hankel kernels. We then discuss a kind of approximate practicable solutions. We note also that the method has important applications in situations which arise in the determination of the temperature distribution in steady-state heat-conduction problems.
منابع مشابه
Approximate solution of dual integral equations
We study dual integral equations which appear in formulation of the potential distribution of an electrified plate with mixed boundary conditions. These equations will be converted to a system of singular integral equations with Cauchy type kernels. Using Chebyshev polynomials, we propose a method to approximate the solution of Cauchy type singular integral equation which will ...
متن کاملAn Axisymmetric Contact Problem of a Thermoelastic Layer on a Rigid Circular Base
We study the thermoelastic deformation of an elastic layer. The upper surface of the medium is subjected to a uniform thermal field along a circular area while the layer is resting on a rigid smooth circular base. The doubly mixed boundary value problem is reduced to a pair of systems of dual integral equations. The both system of the heat conduction and the mechanical problems are calculated b...
متن کاملCAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS
In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...
متن کاملSolving Volterra Integral Equations of the Second Kind with Convolution Kernel
In this paper, we present an approximate method to solve the solution of the second kind Volterra integral equations. This method is based on a previous scheme, applied by Maleknejad et al., [K. Maleknejad and Aghazadeh, Numerical solution of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method, Appl. Math. Comput. (2005)] to gain...
متن کاملDUAL BOUNDARY ELEMENT ANALYSIS OF CRACKED PLATES
The dual boundary element method is formulated for the analysis of linear elastic cracked plates. The dual boundary integral equations of the method are the displacement and the traction equations. When these equations are simultaneously applied along the crack boundaries, general crack problems can be solved in a single-region formulation, with both crack boundaries discretized with discontinu...
متن کامل